Inorganic carbon and oxygen dynamics in a marsh‐dominated estuary

نویسندگان

  • Shiyu Rachel Wang
  • Daniela Di Iorio
  • Wei-Jun Cai
  • Charles S Hopkinson
چکیده

We conducted a free-water mass balance-based study to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. We measured open water diurnal O2 and dissolved inorganic carbon (DIC) dynamics seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2 to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River estuary

The cycling of dissolved inorganic carbon (DIC) and the role of tidal marshes in estuarine DIC dynamics were studied in a Virginia tidal freshwater marsh and adjacent estuary. DIC was measured over diurnal cycles in different seasons in a marsh tidal creek and at the junction of the creek with the adjacent Pamunkey River. In the creek, DIC concentrations around high tide were controlled by the ...

متن کامل

Denitrification Capacity in a Subterranean Estuary below a Rhode Island Fringing Salt Marsh

Coastal waters are severely threatened by nitrogen (N) loading from direct groundwater discharge. The subterranean estuary, the mixing zone of fresh groundwater and sea water in a coastal aquifer, has a high potential to remove substantial N. A network of piezometers was used to characterize the denitrification capacity and groundwater flow paths in the subterranean estuary below a Rhode Island...

متن کامل

Limnol. Oceanogr., 44(3), 1999, 639–649

We measured dissolved O2 concentrations, pCO2 values, and respiratory rates in five estuaries of the southeastern U.S. in October 1995 and July 1996. In the low-salinity sections of the coastal plain rivers, dissolved O2 saturation states were typically only 50%, while pCO2 values were over 4,000 matm. Respiratory rates measured concurrently in estuarine water averaged 8 and 23 mmol m23 d21 in ...

متن کامل

Benthic Nutrient Fluxes from Mangrove Sediments of an Anthropogenically Impacted Estuary in Southern China

Mangroves serve as either sinks or sources for inorganic and organic nutrients and can mitigate anthropogenic nutrient pollution, control the production in adjacent systems, and prevent eutrophication. To better understand the nutrient dynamics in a subtropical mangrove, we employed a three-way approach in the Nanliu River Estuary, southern China: Pore water profiles and sediment incubations re...

متن کامل

Spatial and Habitat-mediated Food Web Dynamics in an Oyster-dominated Estuary

Understanding spatial dynamics and creating spatial boundaries of marine food webs is an important topic that resource managers are beginning to understand. Food web structure, mediated by spatial and habitat differences, was examined in a subtropical estuary using stomach content and stable isotope analyses. The goal of this studywas to characterize the trophic structure in subtidal oyster ree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2018